

Say it with Symbols

Determining the number of 1 ft x 1 ft border tiles necessary for a pool with $x \mathrm{ft}$ long and $y \mathrm{ft}$ wide.

Method 1:

$$
N=2(y+2)+2 x
$$

(There are 2 of the yellow rectangles measuring
$y+2$ and 2 of the x rectangles)
Method 2:

$\mathrm{N}=2(\mathrm{x}+2)+2 \mathrm{y}$
(There are 2 of the yellow rectangles measuring $x+2$ and 2 of the
y rectangles.)

* You may also choose to simplify by distributing:

$$
\mathrm{N}=2(\mathrm{x}+2)+2 \mathrm{y}=2 \mathrm{x}+4+2 \mathrm{y}
$$

Method 3:

$\mathrm{N}=2(\mathrm{x}+1)+2(\mathrm{y}+1)$
(There are two rectangles measuring $\mathrm{x}+1$ and 2 rectangles measuring $\mathrm{y}+1$)

Method 4:

$$
\mathrm{N}=2(\mathrm{y}+1)+\mathrm{x}+(\mathrm{x}+2)
$$

* Note: The possibilities are limitless. You can be creative as you wish. You could cut the corner pieces in half.

How many 1 - ft -square border tiles do you need to surround a pool that is 15 ft long and 7 ft wide?

$$
\mathrm{N}=2(15)+2(7)+4=48 \text { tiles }
$$

The Rothschild pool is trying to set their summer budget. In order to do so, they must make some predictions for the summer. They calculate profit P based on the number of visitors V to come to the pool. The pool workers also know that the number of visitors is based on the probability of rain occurring R. Use the following equations to answer each question.

$$
\mathrm{P}=4.5 \mathrm{~V}-500 \quad \mathrm{~V}=300-280 \mathrm{R}
$$

Suppose the probability of rain is 40%. What profit can the pool expect to make?

Method 1:

$\mathrm{V}=300-280$ (.4)

$$
\begin{aligned}
\mathrm{P} & =4.5(\mathbf{1 8 8})-500 \\
& =846-500 \\
& =346
\end{aligned}
$$

Method 2:

$$
=300-112
$$

$$
\begin{array}{ll}
=300-112 & =846-500 \\
=188 & =346
\end{array}
$$

$$
\begin{aligned}
\hline \mathrm{P} & =4.5(300-280 \mathrm{R})-500 & & \text { Substitute the value of } \mathrm{V} . \\
& =1350-1260 \mathrm{R}-500 & & \text { Distribute. } \\
& =850-1260 \mathrm{R} & & \text { Two formulas combined into one } \\
\mathrm{P} & =850-1260(.4) & & \\
& =850-504 & & \text { Substitute value of } \mathrm{R} . \\
& =\$ 346 & &
\end{aligned}
$$

If the park were expecting to make $\$ 200$, what would the probability of rain be?

Method 1:

$200=4.5 \mathrm{~V}$
+500
+500
$\frac{700}{20}=\underline{4.5 \mathrm{~V}}$
4.5

$\mathrm{~V} \approx 156$

$$
\begin{aligned}
& 156=3 \not 00-280 \mathrm{R} \\
& \frac{-300-\beta 00}{\frac{-144}{-280}=\frac{-280 \mathrm{R}}{-280}} \\
& R \approx 51 \%
\end{aligned}
$$

Check: V = 300-280(.51)

$$
=300-142.8
$$

$$
=157.2
$$

$$
\mathrm{P}=4.5(157.2)-500
$$

$$
=707.4-500
$$

$$
=\$ 207.4
$$

Method 2:

$\mathrm{P}=850-1260 \mathrm{R} \quad$ (Found above.)
$200=8 \not p 0-1260 \mathrm{R}$
$-850-850$
$\frac{-650}{-1260}=\frac{-1260 R}{-1260}$
$-1260-1260$
$52 \approx \mathrm{R}$
Check: $\mathrm{P}=850-1260(.52)$

$$
=850-655.2
$$

$$
=\$ 194.80
$$

Solve.

Ex 1) $5(\mathrm{x}-3)=-50 \quad$ Distribute.
$5 x+-1 \beta=-50 \quad$ Move the constant.

$$
\frac{+1 / 5+15}{\frac{5 x}{5}=\frac{-35}{5}}
$$

Check: $5(-7-3)=-50$

$$
5(-10)=-50
$$

$$
-50=-50
$$

Ex 2) $6 \not x-7=8 x+5 \quad$ Move variables to one side
$-6 x \quad-6 x$ $-7=2 x+\$$
$+-5+-5$
$\frac{-12}{2}=\frac{2 x}{2}$
$-6=x$

Check: $6(-6)-7=8(-6)+5$
$-36+-7=-48+5$
$-43=-43$

$$
-43=-43
$$

Shortest method to find \mathbf{x}.

1) Distribute.
2) Combine Like Terms.
3) Move variables to one side.
4) Solve. (Move constant away from the variable. Then mult/div \{whichever is the inverse $\}$ by the coefficient)

Coefficient is the number in front of the variable. Ex) 9 x 9 is the coefficient.

Finding the area of the shaded region.

Example of an equation for the area of the pool to the left.

$$
\begin{aligned}
A= & (x-3)(x-3)+x(x+5)+(x-3)(x+5)+x(x+5) \\
\quad & \quad-\text { or }- \\
= & x^{2}+(-6 x)+9+x^{2}+5 x+x^{2}+5 x+(-3 x)+(-15)+x^{2}+5 x \\
& \quad(\text { using FOIL \& distributing) } \\
\quad & \quad \text { or }- \\
= & 4 x^{2}+6 x-6 \text { (combining like terms) }
\end{aligned}
$$

Example 2. Find the area of the shaded region. (Assume the circle touches the square.)

$$
\begin{aligned}
A_{\text {shaded }} & =A_{\text {square }}-A_{\text {Ccircle }} \\
& =r^{2}-\pi r^{2}
\end{aligned}
$$

Order of Operations

1) Parentheses and grouping symbols.

$$
\begin{gathered}
2 x+7-3(x-2)-8 \bullet 4 \\
2 x+7-3 x+6-32 \\
\quad-x-19
\end{gathered}
$$

2) Exponents.
3) Multiplication/Division from left to right.
4) Addition/Subtraction from left to right.

Please Excuse My Dear Aunt Sally or PEMDAS

The chorus students are selling boxes of chocolate as a fundraiser. The equation for the profit in dollars P in terms of the number of boxes sold b is:

$$
P=5 s-(125+2 s)
$$

1) State the part that reflects the income:

5s (really is 3s when like terms are combined)
2) State the part that reflects the expenses: $\mathbf{1 2 5}+\mathbf{2 s}$ (really is $\mathbf{1 2 5}$ when like terms are combined)
3) What will the profit be if 250 boxes are sold?

$$
5(250)-(125+2 \bullet 250)
$$

1250-625

\$625

4) Make the problem simpler.

$$
\begin{array}{r}
5 s-(125+2 s)=5 s-125-2 s \\
3 s-125
\end{array}
$$

5) How many boxes must be sold to break even?

$$
\begin{gathered}
0=3 s-125 \\
125=3 s \\
41 \frac{2}{3} \approx 42 \text { boxes }
\end{gathered}
$$

6) How many boxes must be sold to make a profit of $\$ 175$?

$$
\begin{gathered}
175=3 s-125 \\
+125+125 \\
\hline \frac{300}{3}=\frac{3 \mathrm{~s}}{3} \\
100 \text { boxes }=x
\end{gathered}
$$

Sam wants to rent a vehicle for the week.

Rent-A-Wreck charges a $\$ 50$ fee plus $\$ 0.25$ per mile after the first 200 miles: $\mathrm{C}=50+0.25(\mathrm{~m}-200)$

All Car charges a $\$ 200$ fee plus $\$ 0.05$ per mile after the first 500 miles.
$\mathrm{C}=200+0.05(\mathrm{~m}-500)$
When will the cost be the same?
$50+0.25(\mathrm{~m}-200)=200+\mathbf{0 . 0 5}(\mathrm{m}-500)$
$50+0.25 m-50=200+0.05 m-25$
$0.25 \mathrm{~m}=175+0.05 \mathrm{~m}$
$\begin{array}{cc}-0.05 \mathrm{~m} & -0.05 \mathrm{~m} \\ 0.20 \mathrm{~m} & =175\end{array}$
$\overline{0.20} \quad \overline{0.20}$
$\mathrm{m}=875$ miles
When is All Car cheaper? $\mathrm{m}>875$ miles

